

Summary

Week 16/2018 (16-22 April 2018)

- Influenza activity was at inter-season levels in all but one reporting country.
- While low in number, 12% of the individuals sampled from primary healthcare settings tested positive for influenza viruses (compared to 23% in the previous week).
- Both influenza virus types A and B were co-circulating with the majority being type A.

2017-2018 season overview

- Influenza viruses have been circulating widely in the Region between weeks 52/2017 and 16/2018 (based on increased proportions 10% and above of sentinel specimens testing positive for influenza viruses). This is longer than in recent seasons and may contribute to the severity of this season.
- For the Region overall, the majority of influenza viruses detected were type B, representing a high level of circulation of influenza B viruses compared to recent seasons. B/Yamagata lineage viruses have greatly outnumbered those of the B/Victoria lineage.

 Click here for more information
- Different patterns of dominant type and A subtypes were observed between the countries of the Region.
- Of the type A virus detections from sentinel sources, the majority of which were subtyped, A(H1N1)pdm09 viruses have outnumbered A(H3N2) viruses. In non-sentinel sources, similar numbers of A(H3N2) viruses and A(H1N1)pdm09 viruses were reported. Click here for more information
- While low in numbers, characterized A(H3N2) viruses fell mainly in clade 3C.2a (57%) and subclade 3C.2a1 (42%), while 42% of B/Victoria lineage viruses fell in a subclade of clade 1A viruses that are antigenically distinct from the current trivalent vaccine component. Click here for more information
- The majority of severe cases reported this season were due to influenza virus type B infection and have mostly occurred in persons older than 15 years. <u>Click here for more information</u>
- Mortality from all causes now appears be have returned to normal expected levels in all 21 participating countries and regions that report to <u>EuroMOMO</u>. <u>Click here for more information</u>
- Interim results from <u>5 European studies</u> indicate 25 to 52% vaccine effectiveness against any influenza. <u>Click here for more information</u>

Primary care data

Most countries reported activity of respiratory infections below threshold levels, based on syndromic surveillance data for influenza-like illness (ILI) and/or acute respiratory infection (ARI).

Influenza activity

Of 41 Member States and areas reporting on intensity, 1 reported medium intensity and 40 reported low intensity (Fig. 1).

Of the 42 Member States and areas reporting on geographic spread, 6 reported widespread activity, while others reported regional (n=3), local (n=6) or sporadic (n=20) activity and 7 reported no activity (Fig. 2).

Maps of qualitative indicators in the European Region

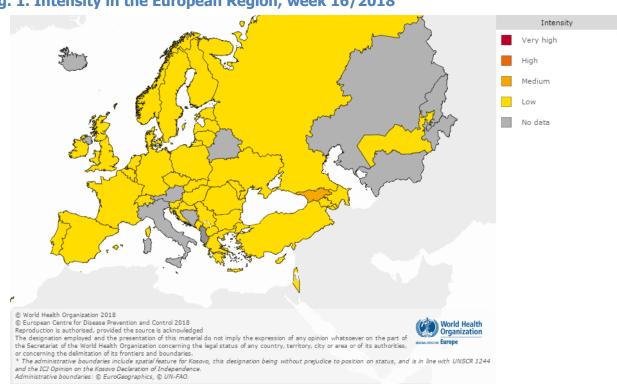


Fig. 1. Intensity in the European Region, week 16/2018

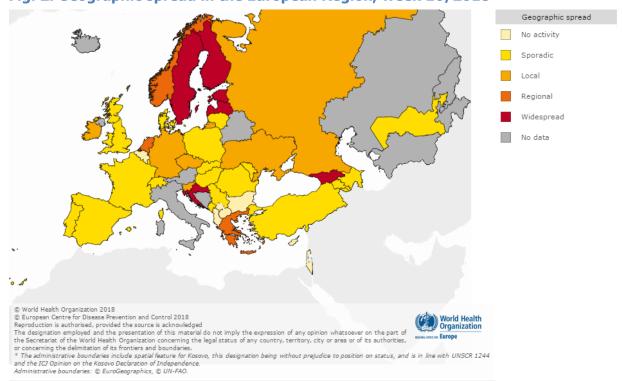
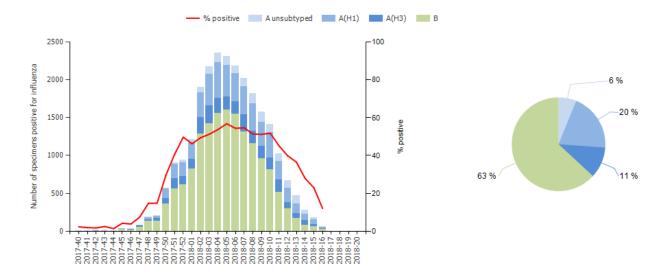


Fig. 2. Geographic spread in the European Region, week 16/2018

For interactive maps of influenza intensity and geographic spread, please see the Flu News Europe <u>website</u>.

Viruses detected in sentinel-source specimens (ILI and ARI)


For week 16/2018, 61 (12%) of 507 sentinel specimens tested positive for influenza viruses; 62% were type A and 38% were type B (Table 1).

Of 36 subtyped A viruses, 69% were influenza A(H1N1)pdm09 and 31% A(H3N2). Of 8 type B viruses ascribed to a lineage, all were B/Yamagata and (Fig. 3 and Table 1).

Overall, since week 40/2017, more influenza type B (63%) than type A (37%) viruses have been detected. Of 7 577 subtyped A viruses, 65% were A(H1N1)pdm09. The majority of type B viruses were reported without lineage, but of the 7 478 ascribed to a lineage, 97% were B/Yamagata (Table 1).

Details of the distribution of viruses detected in non-sentinel-source specimens can be found in the <u>Virus characteristics section</u>.

Fig. 3. Influenza virus detections in sentinel-source specimens by type and subtype, by week and cumulatively ^a

^aPie chart shows cumulative data.

Table 1. Influenza virus detections in sentinel-source specimens by type and subtype, week 16/2018 and cumulatively

	Current We	eek	Season 2017-2018		
Virus type and subtype	Number	%ª	Number	%ª	
Influenza A	38	62.3	9096	36.9	
A(H1N1)pdm09	25	69.4	4922	65.0	
A(H3N2)	11	30.6	2655	35.0	
A not subtyped	2	-	1519	-	
Influenza B	23	37.7	15574	63.1	
B/Victoria lineage	0	0.0	210	2.8	
B/Yamagata lineage	8	100.0	7268	97.2	
Unknown lineage	15	-	8096	-	
Total detections (total tested)	61 (507)	12.0	24670 (59212)	41.7	

^aFor influenza type percentage calculations, the denominator is total detections; for subtype and lineage, it is total influenza A subtyped and total influenza B lineage determined, respectively; for total detections, it is total tested.

Severity

A subset of Member States monitor severe disease related to influenza virus infection by surveillance of 1) hospitalized laboratory-confirmed influenza cases in ICUs (n=12), or other wards (n=8), or 2) severe acute respiratory infections (SARI; n=16).

The majority of severe cases reported this season have been due to influenza type B and have occurred in persons above the age of 15 years. In laboratory-confirmed influenza cases in ICU, slightly more cases were infected with influenza type A compared to type B viruses (n=4 810 and 4 390, respectively).

In laboratory-confirmed influenza cases reported in wards other than ICUs, influenza type B viruses were detected more frequently than influenza type A viruses (10 850 vs. 6 469), and more cases occurred among those older than 64 years compared with patients in the 15–64 years age group (9 904 vs. 5 267).

1.1) Hospitalized laboratory-confirmed influenza cases – Intensive care units (ICUs)

Since week 40/2017, 12 countries have reported laboratory-confirmed influenza cases admitted to either all ICUs in the country or a set of sentinel ICUs (Table 2).

Overall, numbers of reported hospitalized laboratory-confirmed influenza cases in ICUs decreased further in week 16/2018, reflecting the decreasing influenza activity in the Region. There were 37 laboratory-confirmed influenza cases in ICUs, with the majority being in the United Kingdom (n=25, 68%). For weeks 14/2018 and 15/2018, the same countries reported 176 and 107 cases, respectively.

Since week 40/2017, type A influenza viruses have been detected in 52% and type B in 48% of cases in ICUs. Of 1 823 subtyped influenza A viruses, 58% were A(H1N1)pdm09 and 42% A(H3N2). Of 5 667 cases with known age, 45% were 15–64 years old and 48% were aged 65 years and older.

Table 2. Laboratory-confirmed ICU admitted cases* by country, cumulatively weeks 40/2017–16/2018

Country	Total Cases	A unsub.	A(H1N1) pdm09	A(H3N2)	B total	0-4 yrs	5-14 yrs	15-64 Yrs	>64 yrs	UNK
Czech Republic	307	45	64	6	192	12	10	130	155	0
Denmark	445	81	31	27	306	9	7	148	281	0
Finland	64	0	4	29	31	1	1	19	43	0
France	2 914	1 230	519	59	1 106	72	48	1 376	1 364	54
Ireland	166	42	16	28	80	18	16	62	70	0
Netherlands	15	5	0	0	10	0	0	8	7	0
Romania	54	1	25	1	27	4	2	24	24	0
Russian Federation	6	0	1	5	0	0	0	3	3	0
Spain	1 229	302	147	153	627	102	36	537	554	0
Sweden	462	134	9	15	304	10	20	197	235	0
Ukraine	59	1	1	2	55	16	20	23	0	0
United Kingdom	3 479	1 146	243	438	1 652	0	0	0	0	3 479
TOTAL	9 200	2 987	1 060	763	4 390	244	160	2 527	2 736	3 533

UNK = age unknown, *from either sentinel hospitals or all hospitals per country

1.2) Hospitalized laboratory-confirmed influenza cases – other wards

For week 16/2018, 40 cases were reported from other wards, with the majority being in Ireland (60%). Numbers of cases in other wards decreased in week 16/2018 compared to week 15/2018 (n=87).

Since week 40/2017, 8 countries have reported laboratory-confirmed hospitalized influenza cases in other wards (Table 3). The majority (63%) of these cases were infected by influenza type B viruses and 57% of all cases were in patients aged 65 years and older.

Table 3. Laboratory-confirmed hospitalized cases in other wards* by country, cumulatively weeks 40/2017–16/2018

Country	Total Cases	A unsub.	A(H1N1) pdm09	A(H3N2)	B total	0-4 yrs	5-14 yrs	15-64 yrs	>64 yrs	UNK
Czech										
Republic	335	65	86	5	179	6	4	129	196	0
Denmark	7 425	1 194	390	529	5 312	388	272	2 478	4 287	0
Ireland	4 395	1 268	214	485	2 428	587	418	1 258	2 130	2
Romania	101	3	43	6	49	23	13	51	14	0
Russian										
Federation	229	0	29	125	75	43	19	147	20	0
Slovakia	4	2	1	0	1	0	0	4	0	0
Spain	4 571	1 246	253	501	2 571	243	51	1 025	3 252	0
Ukraine	259	10	6	8	235	35	44	175	5	0
TOTAL	17 319	3 788	1 022	1 659	10 850	1 325	821	5 267	9 904	2

UNK = age unknown, *from either sentinel hospitals or all hospitals per country

2. SARI surveillance

Since week 40/2017, SARI cases have been reported by 16 countries, the majority being located in the eastern part of the Region.

For week 16/2018, 857 SARI cases were reported by 10 countries, most (52%) by Kazakhstan; 166 specimens were tested for influenza viruses with 17% being positive, indicating a decrease compared to week 15/2018 (32%).

For SARI cases testing positive for influenza virus, type B viruses have been the most common; 57% overall for weeks 40/2017–16/2018, but only 36% in week 16/2018. A(H1N1)pdm09 viruses were detected in 43% of influenza virus-positive SARI cases in week 16/2018.

Mortality monitoring

Data from 21 EU/EEA Member States or regions reporting to the <u>EuroMOMO</u> project were received for week 16/2018 and included in pooled analyses. Mortality has been significantly elevated in many European countries over the past months, mainly affecting elderly people. However, mortality now appears be have returned to normal expected levels in all the participating countries.

Virus characteristics

Most influenza viruses detected in sentinel surveillance systems this season were type B with those assigned to a lineage being mainly B/Yamagata viruses, while most of the type A viruses subtyped were influenza A(H1N1)pdm09 viruses. Details of the distribution of viruses detected in sentinel-source specimens can be found in the <u>Primary care data</u> section.

Since week 40/2018, the majority of influenza virus detections in non-sentinel systems have been type B with B/Yamagata lineage viruses predominating, as seen in sentinel systems. However, in contrast to sentinel systems, in non-sentinel sources, similar numbers of A(H3N2) viruses and A(H1N1)pdm09 viruses were reported. This may be related to the higher proportion of non-sentinel specimens being derived from hospital-based settings or outbreaks in long-term care facilities for the elderly, with A(H3N2) viruses often causing more severe disease in the elderly, while A(H1N1)pdm09 viruses do so in middle-aged patients. Further details are given in the section below.

Differences in the relative contributions of sentinel and non-sentinel specimen sources to influenza surveillance may lead to variation in (sub)type proportions between countries within the Region.

Viruses detected in non-sentinel-source specimens

For week 16/2018, 2 522 specimens from non-sentinel sources (such as hospitals, schools, primary care facilities not involved in sentinel surveillance, nursing homes and other institutions) tested positive for influenza viruses. Of these, 73% were type A and 27% type B viruses (Table 4). The majority of viruses from non-sentinel specimens were not subtyped or assigned to a lineage.

While relatively few of the viruses detected in non-sentinel specimens since week 40/2017 have been ascribed to a subtype or lineage, 52% of all subtyped A viruses were A(H3N2) and 99% of influenza type B viruses ascribed to a lineage were B/Yamagata lineage (Table 4).

Table 4. Influenza virus detections in non-sentinel-source specimens by type and subtype, week 16/2018 and cumulatively

	Current Wo	eek	Season 2017–2018		
Virus type and subtype	Number	%ª	Number	%ª	
Influenza A	1837	72.8	93 310	44.3	
A(H1N1)pdm09	468	53.2	17 112	48.0	
A(H3N2)	412	46.8	18 507	52.0	
A not subtyped	957	-	57 691	-	
Influenza B	685	27.2	117 411	55.7	
B/Victoria lineage	0	0.0	92	1.1	
B/Yamagata lineage	4	100.0	8 126	98.9	
Unknown lineage	681	-	109 193	-	
Total detections (total tested)	2 522 (14 061)	-	21 0721 (727 546)	-	

^aFor influenza type percentage calculations, the denominator is total detections; for subtype and lineage, it is total influenza A subtyped and total influenza B lineage determined, respectively; as not all countries have a true non-sentinel testing denominator, no percentage calculations for total tested are shown.

Genetic characterization

For specimens collected since week 40/2017, genetic characterization of 2 800 viruses has been reported (Table 5).

Among 887 influenza A(H3N2) viruses attributed to a clade, 502 (57%) fell in the vaccine virus component clade (3C.2a), 376 (42%) in subclade 3C.2a1 with viruses defined by N171K, often with N121K, amino acid substitutions in the haemagglutinin, and 6 (1%) in clade 3C.3a. Viruses in the first 2 groups are antigenically similar, but both clade and subclade are evolving rapidly with the emergence of several virus clusters defined by additional amino acid substitutions in the haemagglutinin, thereby requiring continued monitoring of antigenic characteristics. 3 A(H3N2) viruses were not attributed to any clade.

All 488 A(H1N1)pdm09 viruses fell in the A/Michigan/45/2015 vaccine component clade (6B.1).

54 (42%) of the 128 B/Victoria-lineage clade 1A viruses belonged to a subgroup represented by B/Norway/2409/2017, which carries HA1 double amino acid deletion, Δ 162-163, characteristic of a new antigenically distinct subgroup of viruses that has been detected in several countries. All of the 1 297 B/Yamagata lineage viruses belonged to clade 3, represented by B/Phuket/3073/2013. For more information on virus characterizations for EU/EEA countries, see the WHO CC London February 2018 report.

Table 5. Viruses attributed to genetic groups, cumulative for weeks 40/2017–16/2018

Phylogenetic group	Number of viruses
A(H1N1)pdm09 A/Michigan/45/2015 (clade 6B.1) ^a	488
A(H1N1)pdm09 not attributable to any clade	0
A(H3N2) A/Hong Kong/4801/2014 (clade 3C.2a) ^b	502
A(H3N2) A/Singapore/INFIMH-16-0019/2016 (clade 3C.2a1) ^c	376
A(H3) representative A/Switzerland/9715293/2013 subgroup (clade 3C.3a)	6
A(H3N2) not attributable to any clade	3*
B/Brisbane/60/2008 (Victoria lineage clade 1A) ^{b, d}	74
B/Norway/2409/2017 (Victoria lineage clade 1A Δ162-163) ^e	54
B(Victoria) lineage not attributed to clade	0
B/Phuket/3073/2013 (Yamagata lineage clade 3) ^{c, f}	1 297
B/Yamagata lineage not attributed to any clade	0

^a Vaccine component of vaccines for both northern (2017–2018 season) and southern (2018 season) hemispheres

The recommended composition of trivalent influenza vaccines for the 2017–2018 season in the <u>northern hemisphere</u> includes an A/Michigan/45/2015 (H1N1)pdm09-like virus; an A/Hong Kong/4801/2014 (H3N2)-like virus; and a B/Brisbane/60/2008-like virus (B/Victoria lineage). For quadrivalent vaccines, a B/Phuket/3073/2013-like virus (B/Yamagata lineage) was recommended.

On 21 February 2018 WHO published influenza vaccine recommendations for the 2018-2019 season in the northern hemisphere. Two changes were recommended compared to the current trivalent and quadrivalent vaccines recommended for the 2017–2018 season in the northern hemisphere. Similar to the recommended composition for the 2018 southern hemisphere vaccine, the A(H3N2) component was changed to an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus. In trivalent vaccines the B component was switched to a B/Colorado/06/2017-like virus, representing the emergent strain of B/Victoria-lineage viruses with deletion of K162 and N163 in the HA1 subunit. The A(H1N1)pdm09 component in trivalent and quadrivalent vaccines and the B/Yamagata component in quadrivalent vaccines remained the same.

^b Vaccine component for northern hemisphere 2017–2018 season

^c Vaccine component for southern hemisphere 2018 season

^d Vaccine component of quadrivalent vaccines for use in southern hemisphere 2018 season

^e Deletion of K162 and N163 in the HA1 subunit of the hemagglutinin and antigenically different from the vaccine component.

f Vaccine component of quadrivalent vaccines for use in northern hemisphere 2017-2018 season

^{*} A(H3) attributed to recognised group in current guidance but not listed in TESSy

Vaccine effectiveness

Interim results from <u>5 European studies</u> indicate that, in all age groups, influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -47 to 7% against influenza A(H3N2) and 36 to 54% against influenza B, which is consistent with earlier estimates from <u>Canada</u>, <u>Finland</u>, <u>Germany</u>, <u>Spain</u>, <u>Stockholm County</u> and the <u>United States of America</u>.

Antiviral susceptibility testing

For technical reasons only data up to week 10 are currently available.

Neuraminidase inhibitor susceptibility has been assessed for 1 436 viruses with collection dates since week 40/2017, up to week 10/2018: 667 type B, 449 A(H3N2), and 320 A(H1N1)pdm09). 1 A(H3N2) virus carried amino acid substitution R292K in neuraminidase and showed evidence of reduced inhibition by both oseltamivir and zanamivir. 1 A(H1N1)pdm09 virus showed evidence of reduced inhibition by oseltamivir. 3 type B viruses showed evidence of reduced inhibition by zanamivir and 1, carrying amino acid substitution D198N in neuraminidase, by both oseltamivir and zanamivir.

This weekly update was prepared by an editorial team at the European Centre for Disease Prevention and Control (Cornelia Adlhoch, Pasi Penttinen, Phillip Zucs), Angeliki Melidou (ECDC Consultant from the National Influenza Centre for N. Greece) and the WHO Regional Office for Europe (Caroline Brown, Piers Mook, Dmitriy Pereyaslov and Tamara Meerhoff, Temporary Advisor to WHO). It was reviewed by country experts (Raquel Guiomar, Instituto Nacional de Saúde Doutor Ricardo Jorge, Portugal; Vladimir Mikic, Institute of Public Health, The former Yugoslav Republic of Macedonia) and by experts from the network (Adam Meijer, National Institute for Public Health and the Environment (RIVM), the Netherlands; Rod Daniels and John McCauley, WHO Collaborating Centre for Reference and Research on Influenza, Francis Crick Institute, United Kingdom; Tyra Grove Krause, Statens Serum Institut and EuroMOMO network, Denmark).

Maps and commentary do not represent a statement on the legal or border status of the countries and territories shown.

All data are up to date on the day of publication. Past this date, however, published data should not be used for longitudinal comparisons, as countries retrospectively update their databases.

The WHO Regional Office for Europe is responsible for the accuracy of the Russian translation.

Suggested citation:

European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Flu News Europe, Joint ECDC—WHO weekly influenza update, week 16/2018.

Tables and figures should be referenced:

European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Flu News Europe, Joint ECDC–WHO weekly influenza update, week 16/2018.

- © World Health Organization 2018
- © European Centre for Disease Prevention and Control 2018

Reproduction is authorized, provided the source is acknowledged.